Clinical Pharmacology and the Development of Products for the Treatment of Anthrax

Martin D. Green, Ph.D., AD P/T ODE 1&6, CDER, FDA

Purposes, Goals, Objectives

- Works within a framework and provides a framework to relate the animal findings to the potential effectiveness of products in humans
 - Works within a framework for approvals
 - Attempts to provide a framework relating drug, patient and infectious organism
- Provides a means of assessing the need for changes in dose or regimen for various populations
 - Renal/hepatic impairment
 - Pregnancy, juvenile, geriatric
 - Drug-drug interactions between itself and on other therapeutics

Within Framework Considerations

- FDA may grant marketing approval...based on adequate and well-controlled animal studies...likely to produce clinical benefit
- Adequate and well controlled
 - Suitable subjects represent the population intended for use
 - Minimizes potential for bias in study design by investigator
 - Reduces confounding factors
 - Permits quantitative evaluation
 - Uncontrolled studies are corroborative and supportive

Provides a Framework for Effectiveness from Animals to Humans

- Two aspects,
 - Clinical pharmacology either pk and/or pd will bridge the mechanism(s) for the prevention of injury/death to the therapeutic effect
 - The clinical pharmacological endpoint(s)
 provides a bridge between animal species tested
 and human populations
- May need to demonstrate the bridge in more than 1 animal species

Bridges

- Between laboratory animals and humans
- Between laboratory animals (inter-species, between groups, inter-animal)
- Between various routes of administration sc, im, iv, ip
- Between different doses and dosing regimens
- Influenced by 2 ideas surrogate markers, therapeutic drug monitoring

Somewhat Like Surrogate Markers, but not Surrogate Markers

- PD markers different from use in an accelerated approval but has a similar intent to its use in terms of an endpoint that provides a bridge from the observed to the potential event
 - In this case not from a possible indicator of efficacy to potential efficacy, but from an animal based experience to potential human experience
- Like surrogate marker, endpoint should be
 - In loop of causation and biological plausibility
 - Proportionality (dose response relationship)
- Like all theories, may be serious threatening by discontinuities of fact if not reconciled

Like Use in Therapeutic Drug Monitoring

- Emphasis on relationships and predictability to efficacy and toxicity
- Emphasis on an analytical and mathematically characterized models – simple to complex
- Target levels
 - Dose and regimen modification to achieve target levels

Target Levels

- Floor effect level
 - In vitro susceptibility using MIC
 - Concentration-dependent mechanisms
 - AUC/MIC area concentration above threshold (MIC)
 - Cmax/MIC
 - Time dependent mechanisms
 - $MIC(T_{MIC})$
- Ceiling effect most likely related to toxicity or impacts on performance related to human population
- Lead to a basic theory performance bands

Discontinuities, Ambiguities or Wayward Theories?

- Problems in effectiveness demonstration
 - Validation of exposure
 - Drug levels not detected in treated and surviving animal
 - Threat agent, lack of evidence of challenge agent such as negative blood cultures in dying animals
 - Inter-subject variability in dose response
 - Difficult to reconcile against differences in inter-subject sensitivity if based on the individual rather than group response.

Additional Concerns

- Effective levels
 - Assessment of drug levels at sites of pathology desirable, but not often possible - should be considered in a pk/pd model or biodistribution data
 - Isolates to determine whether varying sensitivities exist

Building a Model of Clinical Pharmacology Relationships

- Patient (Host) factors
- Drug factors
- Infectious organism (bacteria) factors

Host Factors

- Host defense
 - Route of infection
 - Ability and importance of various host defense mechanisms
 - Phagocytosis
 - Antibody formation
 - Pathophysiological pathways
 - Extent and degree of cytokine release
 - Expression of signs and symptoms of morbidity
- Pharmacokinetics
 - Routes and extent of elimination
 - Clearance, volume of distribution and half-life

Drug Factors

- Pharmacodynamics
 - Affinity
 - Intrinsic activity
 - Mechanism of action(s)
- Toxicity

Anthrax Related Factors

- Virulence and resistance
 - Type of isolate
 - Time and extent of germination of spores
 - Expression of virulence capsule and/or toxins
 - Sensitivity to interventions singly or combined

Other Tasks

- Drug-drug interactions including drug-vaccine or hyper-immune globulins
 - As fixed combination rational and experimental proof of contribution
 - Used in conjunction with as concomitant therapy concern
 - Antagonism
 - Additivity
 - Synergism

Conclusions

• Clinical pharmacology provides a means of relating factors involving the host, bacteria and drug to understand the potential for human efficacy based on animal studies